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Prediction of Jominy Hardness Profiles of 
Steels Using Artificial Neural Networks 

W.G. Vermeulen, P.J. van der Wolk, A.P. de Weijer, andS. van der Zwaag 

Jominy hardness profiles of steels were predicted from chemical composition and austenitizing tempera- 
ture using an artificial neural network. The neural network was trained using some 4000 examples,  cov- 
ering a wide range of steel compositions. The performance of the neural network is examined as a 
function of the network architecture, the number of alloying elements, and the number of data sets used 
for training. A well-trained network predicts the Jominy hardness profile with an average error of about 
2 HRC. Special attention was devoted to the effect of boron on hardenabilityo A network trained using 
data only from boron steels produced results similar to those of a network trained using all data available. 
The accuracy of the predictions of the model is compared with that of an analytical model for hardenabil- 
ity and with that of a partial least-squares model using the same set of data. 
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1. Introduction 

THE Jominy or end-quench test is a simple, widely used 
method for characterizing the hardenability of  steels. This har- 
denability is determined entirely by the steel microstructure, 
which in turn is primarily determined, for the fixed range of  
cooling rates on the Jominy test sample, by the alloying ele- 
ments. Therefore, it should be possible to predict the har- 
denability of  a steel strictly on the basis of its chemical 
composition, assuming other parameters to be constant. 

Previous attempts to predict hardenability failed to develop 
an accurate empirical model over a wide range of  steel grades 
because of use of a predefined functional relationship between 
the hardness profile and the chemical composition of  a steel. 
These predefined relations were generally assumed to be linear, 
which is not always the case. Neural networks are more suitable 
to model the effect of chemical composition on hardenability 
because they require no prior assumptions concerning the func- 
tional dependence. Furthermore, neural networks can readily 
handle nonlinear dependencies. 

This paper describes the development of  a neural network 
to predict the Jominy hardness profile of steels based on 
chemical composition and austenitizing temperature. A 
large data set containing the chemical compositions, 
austenitizing temperatures, and Jominy hardness profiles of  
some 4000 low-alloy and boron-containing steels was sup- 
plied by Nedstaal BV. The influence of  the number of  hidden 
nodes-- the  architecture of  the neural ne twork--and of  the 
number of  training data on network performance is investi- 
gated. Also, the performance of  the neural network models is 
compared with that of  an empirical model and of  a linear par- 
tial least-squares model. 
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2. The Jominy or End-Quench Test 

The Jominy or end-quench test (Ref 1) is a robust test that is 
widely used to characterize the hardenability of  steels. In this 
test, a specimen with a diameter of  1 in. and a length of  3 or 4 in. 
is austenitized for approximately 30 to 35 min. The austenitiz- 
ing temperature depends on the composition of  the steel being 
investigated. After this heat treatment, one end of  the specimen 
is quench hardened for at least 10 min in a water stream with a 
temperature of  5 to 30 ~ the other end is cooled in air. 

As a result, a cooling-rate gradient develops over the length 
of the specimen, with the highest cooling rate at the quenched 
end. This gradient results in different microstructures--and 
thus different hardnesses--along the length of the specimen. 
The hardenability of  the steel is expressed by measuring the 
hardness of the specimen on the Rockwell C scale at intervals 
of  l/t6 in., beginning at the quenched end. These Jominy hard- 
ness profiles characterize the hardenability of  a steel. 

3. Neural Networks 

Statistical techniques may provide a useful alternative for 
any process that cannot be described with sufficient accuracy 
using physicomathematical models. In situations where tradi- 

(3 
Fig. 1 Schematic representation of a hierarchical neural net- 
work. Data are transferred from left to right along the arrows; 
the circles represent the nodes or neurons. 
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tio'nal statistical techniques fail to provide an accurate model, 
as in the case of  strong nonlinearity, a new statistical technique 
called neural network modeling may be successful. There are 
many types of  neural networks. This study used a feed-forward, 
hierarchical neural network--feed-forward, because the infor- 
mation is processed in one direction, from input to output; hier- 
archical, because the processing elements are ordered in layers. 
This type of  network is usually employed for modeling. Neural 
networks are described in detail in Ref 2 to 4. 

A feed-forward, hierarchical neural network is shown sche- 
matically in Fig. 1. The basic unit in a neural network is its 
processing element, called a node or a neuron. In hierarchical 
neural networks, these nodes are ordered in layers. The net- 
work used contains three layers: an input layer, a so-called hid- 
den layer, and an output layer. Each node in a layer is 
connected, via a weight factor, with each node in the preceding 
layer, so the neural network is fully connected. The number of 
nodes in the input layer equals the number of  input parameters. 
The number of nodes in the output layer equals the number of 
output parameters. The optimum number of  nodes in the hidden 
layer depends on the complexity of the problem. 

Each node computes the inner product of  its input values 
and their weight factors and passes this value to a sigmoid 
transfer function, which produces the output signal. To deter- 
mine these weight factors, the network must be trained. Our 
neural network was trained using supervised training with 

input layer hidden layer output layer 

input ~ ~ output t~get 
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Fig. 2 Flowchart of the training cycle in a feed-forward, hierar- 
chical neural network 
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back-propagation of  error as the training rule. For a detailed de- 
scription of  network training procedures, see Ref 5. 

The training cycle is outlined in Fig. 2. To start, random val- 
ues are attributed to the weight factors. Then, the input data of  
one sample are processed by the network, and the output is 
compared with the target output. The difference between these 
values--the error in prediction--is a measure for the weight 
factor adaption. This adaption takes place in the reverse direc- 
tion, known as back-propagation of  error. First, the weight fac- 
tors of  the output nodes are adapted, then the weight factors of  
the nodes in the hidden layer, and then those of  the input layer. 
Once the weight factors have been adapted for all samples, the 
training cycle is repeated until the differences between calcu- 
lated and target output values are minimized sufficiently. 

At large numbers of training cycles, the network starts to 
model not only the functional dependencies between input and 
output parameters but also the noise in the data set. This is 
called overtraining. To prevent the network from overtraining, 
the data are split into a relatively large training set and a smaller 
test set. The weight factors in the network are adjusted using the 
data in the training set only. In case of  overtraining, the error for 
the training set decreases while that for the test set increases 
with further training. At this point, training is stopped. 

Once the network is trained, the weight factors are fixed and 
the neural network may be used to calculate the output for an ar- 
bitrary set of  input data. A major advantage of  the neural net- 
work models is the ability to vary just one parameter, while 
keeping the remaining parameters constant at selected values. 
Such information cannot always be obtained otherwise. 

4. Data Handling 

Prior to training of the first network, some data handling 
was applied. First, the appropriate input and output parameters 
for the network were selected. The concentrations of 16 chemi- 
cal elements and the austenitizing temperature were available 
as potential input parameters. The ten most relevant elements 
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were selected. To approach the ideal situation of  a uniform dis- 
tribution of the data over the range of  concentrations, some 75 
steels with anomalous compositions were excluded. A data set 
of  3874 steel compositions with corresponding Jominy hard- 
ness profiles remained. The distribution of the data before and 
after data selection is shown in Fig. 3. 

The input parameters for this network, referred to here as 
network 1, were ten alloying element concentrations and the 
austenitizing temperature, which ranged from 840 to 960 ~ 
The concentration ranges of  the elements were: 

Element Concentration, wt % 

Carbon 0.09-1.04 
Manganese 035-1.54 
Phosphorus 0-0.24 
Sulfur 0-0.23 
Silicon 0.01-0.34 
Copper 0.01-1.26 
Chromium 0-1.67 
Nickel 0.01-1.7 
Molybdenum 0-0.45 
Aluminum 0-0.066 

The output consisted o f  the hardness values at 19 intervals 
of  1/16 in. from the quenched end (J1 to J19). In some cases, the 
Jominy hardness profiles were not completely characterized. 
The hardness values at the positions relatively far away from 
the quenched end had not been measured. In these cases, miss- 
ing hardness values were assumed to be equal to the hardness 
value at the highest Jominy position measured. No quantitative 
grain size information was available, but all steels were known 
to be fine grained. Of the total data set, 75% was used for train- 
ing and 25% was used for validation. 

5. Results and Discussion 

5.1 Influence of Number of Nodes in the Hidden Layer 
o n  Network Performanc 

Four measured and predicted Jominy hardness profiles are 
shown in Fig. 4 to illustrate the predictive capabilities of net- 
work 1 over a wide range of  steel grades. The chemical compo- 
sitions and austenitizing temperatures of these four steels are 
shown in Table 1. In this case, the network was trained using 15 
nodes in the hidden layer. Clearly, network 1 predicts the four 
different Jominy profiles with high accuracy. 

Figure 5 shows the influence of  the number of  nodes in the 
hidden layer- - the  network architecture---on network perfor- 
mance. The error plotted is the product of the range of  hardness 
variations at that particular Jominy position and its relative 
standard deviation (RSD), which is defined as: 

] ~ (Measured - Predicted) 2 

RSD = ~I/all samples 
Number of  samples - I 

The error decreases with an increasing number of  nodes in the 
hidden layer. The error in hardness for Jominy positions 3 to 8 
is always higher than for the other Jominy positions. This be- 

havior can be explained as follows: The hardnesses near the 
edge of the specimen are almost completely determined by car- 
bon content (Ref 6) and vary little with position. At high 
Jominy positions, little variation in the cooling rate occurs; 
hence, hardness varies little with position. In the intermediate 
zone, however, hardness varies strongly with position. A little 
variation or error in Jominy distance results in a high variation 
of hardness, and thus in a high experimental error in this region. 

For  the complete Jominy hardness profile, the difference be- 
tween the predicted and the experimental value is of the same 
magnitude as the experimental error. Of course, errors in ele- 
ment concentration also contribute to the difference between 
predicted and expected values. It should be pointed out that no 
signs of overtraining of the network, which would also increase 
the error in the predictions for the test set, were observed. 

As it turned out, neither the elements phosphorus, sulfur, 
and copper nor the austenitizing temperature appeared to sig- 
nificantly influence the Jominy hardness profile. Therefore, 
these elements and the austenitizing temperature were omitted 
as input parameters in subsequent networks. The austenitizing 
temperature had been chosen on the basis of  carbon content, so 
these two input parameters are highly correlated. Highly corre- 
lated parameters offer no extra information, so one of  them can 
be omitted. 

Furthermore, it was found that the prediction of  hardness 
values for high-carbon steels (C > 0.65%) by network 1 was 
not accurate. We believe that the reason for this deviant predic- 
tion can be found in the inequality of  the data distribution. Only 
some 50 steels in the data set had a carbon content higher than 
0.65%, so the majority of the s tee ls - -a lmost  3800 se ts - -had  a 
carbon content in the 0.09 to 0.65% domain. The network did 
not seem to recognize the variations caused by the high carbon 
content as significant, but saw them merely as noise. 

A new network (network 2) was trained with nine alloying 
elements as input parameters: carbon, manganese, silicon, 
chromium, nickel, molybdenum, and aluminum, plus new ele- 
ments boron and nitrogen. The output parameters remained un- 
changed. The number of nodes in the hidden layer was fixed at 
15, because network 1 yielded the best prediction for this num- 
ber of hidden nodes. The concentration ranges of  the elements 
used as input parameters for network 2 were: 

Element Concentration, wt % 

Carbon 0.09-0.65 
Manganese 0.35-1.54 
Silicon 0.01-0.34 
Chromium 0-1.67 
Nickel 0.01-1.7 
Molybdenum 0-0.45 
Boron 0-0.0057 
Aluminum 0-0.066 
Nitrogen 0-0.014 

Figure 6 shows the errors in prediction for test and training 
sets as a function of  Jominy distance. Again, the difference be- 
tween predicted and measured values is of  the same magnitude 
as the experimental error of  the hardness value itself. However, 
it is concluded that the overall performance of the network 2 is 
better than the performance of network 1 because it is more 
compact, having fewer input parameters. 
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5.2 Influence of Number of Data Sets on Network 
Performance 

Section 5.1 showed that an artificial neural network with 15 
hidden nodes can predict the hardenability of  steels from their 
chemical composition using some 2900 (75% of 3900) data 
sets for training. However, the minimum number of  data sets 
required to train an accurate network is yet unknown. There- 
fore, several 9-15-19 networks were trained with different 
numbers of  data sets. The compositional ranges defined in the 
previous seciion were covered in all training cycles. The pre- 
diction errors for these networks are shown in Fig. 7, which 
demonstrate~ that 800 sets of  data are sufficient to build a satis- 
factory model. All  networks were validated with an identical 
test set containing 667 data sets. 

Clearly, the number o f  training data sets required depends 
on both the number of  input parameters and the nonlinearity of 
the functional dependence. Generally, the number of data sets 
should be between 2 N and 3 N, where N is the number of inde- 
pendent orthogonal input parameters. 

5.3 Influence of Boron Concentration on Prediction of 
Jominy Hardness Profiles 

Boron holds a special place among the steel alloying ele- 
ments because of  its significant effect on hardness even at very 

low concentrations. The presence of boron in sizable amounts 
influences steel hardenability in two ways (Ref 7). First, the in- 
cubation time for ferTite formation is increased, and the nuclea- 
tion rate after the incubation period is lowered by the formation 
of  borocarbides along the austenite grain boundary. Second, 
many undissolved borocarbides are distributed homogene- 
ously in the austenite grains without any specific crystal- 
lographic relationship with the austenite lattice. They provide 
nucleation sites during subsequent cooling, resulting in a finer 
structure and thus a higher hardness. 

However, at higher carbon concentrations (C > 0.25%), ex- 
cessive borocarbide formation makes boron less effective in re- 
ducing the rate of ferrite formation, resulting in an optimum 
boron concentration for maximum hardenability (Ref 7). This 
optimum boron concentration is on the order of  15 to 20 ppm, 
but its exact value is still debated. 

Figure 8 shows the influence of  boron concentration on the 
predicted Jominy hardness profiles for two steels with different 
carbon concentrations. These results were obtained using net- 
work 2. The chemical compositions of  these two steels are 
given in Table 2. According to network 2, the hardnesses at 
Jominy distances 2 to 8 are most influenced by boron concen- 
tration. It appears that at boron concentrations greater than 
0.002%, additional boron has little effect on hardness at these 
Jominy distances. At  greater Jominy distances, the influence of  

Table 1 Chemical compositions and austenitizing temperatures of the steels in Fig. 4 

Anstenitizing Composition, wt % 
Steel No. temperature, ~ C Mn P S Si Cu Cr Ni Mo AI 

1 920 0.13 0.67 0.013 0.014 0.06 0.19 1.04 0.07 0.23 0.037 
2 860 0.48 0.67 0.007 0.013 0.21 0.08 1.02 0.47 0.92 0.041 
3 820 0.60 0.61 0.012 0.022 0.24 0.08 0.06 0.05 0.01 0.020 
4 860 0.51 0.83 0.008 0.015 0.23 0.12 0.50 0.56 0.18 0.025 
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Fig, 4 Four different experimental and predicted Jominy hard- 
ness profiles 
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boron is small. Furthermore, the trend is reversed: Higher bo- 
ron concentrations result in lower hardness values. 

To examine the influence of boron on hardenability in more 
detail, a special network was trained specifically for boron- 
containing steels. These steels were selected from the initial set 
of data. Only some 1100 boron-containing steels were avail- 
able for training and validation of the boron network. In this 
case, all data were used for training. To avoid overtraining, the 
number of iterations was kept at the same level as for the net- 
works trained earlier. The concentration ranges of the elements 
used as input parameters in the boron network were: 

Element Concentration, wt % 

Carbon 0.14-0.41 
Manganese 0.53-1.42 
Silicon 0.01-0.3 
Chromium 0-0.5 
Nickel 0.02-0.13 
Molybdenum 0-0.05 
Boron 0.002-0.0057 
Aluminum 0-0.063 
Nitrogen 0-0.014 

Note that the minimum boron concentration for this net- 
work was 0.002%, in contrast to network 2, where it was 0%. 
The boron network was trained using 15 nodes in the hidden 
layer. 

To compare the predictions of network 2 with those of the 
boron network, the hardness values at the J3 and J4 positions 
are plotted in Fig. 9. There is a good agreement between the 
predictions of both networks in the overlapping concentra- 
tion range. The boron network yields no reliable predictions 
for boron concentrations below 0.002%. The predictions of 
both networks do not disagree with the optimum boron con- 
centration value reported in the literature (Ref 7). However, 
an optimum concentration, if present, is not well defined. 

5 .4  Comparison of the Neural Network Model with the 
Comprehensive Model of Just 

The predictions of the neural network models were com- 
pared with those of the so-called comprehensive model of Just 
for the hardenability of steels (Ref 8). The Just model was used 
for comparison because it does not require grain size values in 
the input data, as do most other empirical models. The concen- 
tration ranges over which the Just model is valid are: 

Element Concentration, wt % 

Carbon 0.10- 0.64 
Manganese 0.45-1.64 
Silicon 0.15 - 1.78 
Chromium 0.02-1.55 
Nickel 0.01 - 1.85 
Molybdenum 0-0.45 
Vanadium 0-0.19 

Only those steels in our original data set that fell within these 
ranges- -  some 3000--were used to determine the accuracy of 
the Just model. The results are shown in Fig. 10, Both neural 
network models outperformed Just's comprehensive model; 
the error of prediction of networks 1 and 2 was three to four 
times lower than that of the Just model. Only the first Jominy 
vahae was predicted with the same accuracy by both types of 
models. 

Table  2 C h e m i c a l  c o m p o s i t i o n s  o f  the  t w o  c lasses  o f  steel  
p lo t ted  in Fig.  8 

Composition, wt % 
Class C Mn Si Cr Ni Mo B AI N 

! 0.39 0.65 0.22 0.22 0.07 0.02 0,0.002, 0.038 0.008 
or 0.005 

2 0.18 1.12 0.2 0.05 0.05 0.01 0,0.002, 0.035 0.01l 
or 0.005 
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Fig. 8 Influence of boron concentration on prediction of 
Jominy hardness profiles for two classes of steel (see Table 2). 
The predictions were made by network 2. 
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5 . 5  Comparison o f  the  Neura l  Ne twork  Models  with a 
Partial  Leas t -Squares  M o d e l  

Partial least-squares (PLS) is a multivariate regression 
method based on the prediction of dependent (output) variables 
using only linear combinations of  independent (input) vari- 
ables. This is in contrast to neural networks, which allow non- 
linear dependencies. The PLS method is described in detail by 
Geladi and Kowalski (Ref9,  10). 

The PLS method was used in the same way as the neural net- 
works. The errors of  prediction of the PLS model are also 
shown in Fig. 10. The neural network models had a lower error 
"of prediction than the PLS model; only the hardness at the first 
Jominy position was approximated with the same accuracy. 
However, the PLS model was substantially more accurate than 
the Just model. 

6. Conclusions 

It is possible to predict the Jominy hardness profiles of  steels 
from chemical composition quite accurately using feed-for- 
ward, hierarchical neural networks. The errors of  prediction for 
the neural network models are of  the same magnitude as the er- 
rors in the hardness values themselves. For the range of steel 
compositions investigated, approximately 800 sets of  data 
were sufficient to build an accurate model using nine alloying 
e l e m e n t  concentrations as input parameters. Special attention 
was devoted to the effect of  boron on hardenability. The net- 
work trained using data only from boron-containing steels 
yielded approximately the same results as the network trained 
using all data sets available, indicating the robustness of the 
neural network models. The neural network models are much 
more accurate than the comprehensive model of  Just and a PLS 
model. 
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